High-Speed, Stereoselective Polymerization for Renewable, Bio-derived Plastics

Opportunity

Available for Licensing

IP Status

US Utility Patent: US 9309332

Inventors

Eugene Y Chen
Yangiian Hu
Yuetao Zhang

At A Glance

Researchers at Colorado State University have developed multiple patented methods to synthesize polymers from a class of renewable compounds encompassing several butyrolactones. The methods are catalytic and utilize novel coordination polymerization systems that exhibit exceptional activity and proceed at high speed.  Use of coordination polymerization allows for the synthesis of stereoregular polymers from racemic monomer solutions at room temperature (unprecedented in the case of at least one butyrolactone).

Licensing Director

Mandana Ashouri
Mandana.Ashouri@colostate.edu
970-491-7100

Reference No.:  12-008

Background

Fabrication of polymers and plastics from naturally renewable feedstocks offers the potential for a cost effective and sustainable alternative to petroleum-based polymers. Biomass-derived polymers based on butyrolactones are a potential substitute for petroleum-derived polyacrylic plastics, but methods suitable for large scale production have not previously been known.

Technology Overview

In contrast with alternative systems based on radical polymerization, this coordination polymerization method yields stereoregular, isotactic polymer products with high reaction rates and high conversion percentages. The resulting plastics exhibit enhanced materials properties over the widely used poly(methyl methacrylate) (pMMA). In particular, they display high stereoregularity and excellent resistance to heat, solvents, and scratching, as well as extremely high glass-transition temperatures (Tg), up to 290 °C.

The sustainability and advantageous properties exhibited by these materials make them excellent candidates to displace petroleum-based polymers based on methacrylates.  The enhanced activity of the catalytic polymerization reaction and the efficient use of starting materials may make this a cost-effective method to produce renewable, bio-derived plastics at large scale.  The superior features of the resulting polymers may offer cost and performance advantages over petroleum-based polyacrylics in a number of applications, such as plastic optical fibers and any application requiring high heat and solvent resistance.

Benefits
  • Rapid, selective catalytic system to produce vinyl plastics from renewable biomass
  • Stereoregular, isotactic polymers with high Tg (290 °C) and outstanding resistance to heat, solvents, and scratching
  • Renewable alternative with cost and performance advantages over petroleum-based polyacrylics such as pMMA
Applications
  • Optical fibers
  • Heat/solvent resistant plastics
  • Replace petroleum-based polymers based on methacrylates
  • Renewable bio-derived industrial plastics
Publications

Chen, Xia, et al. “Stereoselectivity in Metallocene-Catalyzed Coordination Polymerization of Renewable Methylene Butyrolactones: from Stereo-Random to Stereo-Perfect Polymers.” Journal of the American Chemical Society, U.S. National Library of Medicine, 2 May 2012, www.ncbi.nlm.nih.gov/pubmed/22524267.

Hu, Yangjian, et al. “Ansa‐Rare‐Earth‐Metal Catalysts for Rapid and Stereoselective Polymerization of Renewable Methylene Methylbutyrolactones.” Wiley Online Library, John Wiley & Sons, Ltd, 1 Feb. 2012, onlinelibrary.wiley.com/doi/full/10.1002/chem.201102677.

Last updated: April 2020

Add keywords or various names of inventors here (text is hidden)