Automated Agricultural System to Systematically Discover Phenotypes Relevant to Crop Breeding and Genetics

Opportunity

Available for Licensing

IP Status

US Utility Patent Pending (Not Yet Published)

Inventors

John McKay
Caleb Alvarado
Guy Babbitt
Kyle Palmiscno
Christopher Turner
Bryce Whitehill

At A Glance

Researchers at Colorado State University have developed an automated system for sampling root systems from agricultural research plots in the field to systematically discover phenotypes relevant to crop breeding or genetics.  For the purposes of breeding crops or discovering genes controlling various traits of crops, analysis of hundreds or thousands of genotypes is required.  Thus, any phenotyping method that aims to be relevant for breeding or genetics needs the ability to be implemented on hundreds or thousands of plots per day. 

The innovative tool developed here will revolutionize the ability to study root structure and function in relevant agriculture field setting at a robust scale.  The system removes the bottleneck to apply genetic and genomic tools for the discovery and deployment of root traits that control plant growth and soil biogeochemistry.  These breakthroughs will profoundly impact plant productivity for food, fiber, and fuel.

For more details, please contact our office.

Licensing Director

Mandana Ashouri
Mandana.Ashouri@colostate.edu
970-491-7100

Reference No.: 2019-109

Background

Producing a sustainable food, fiber, and bioenergy supply for 9.7 billion people by 2050 is perhaps the greatest environmental, scientific, and social challenge of the 21st century.  Meeting this challenge will require a substantial increase in crop productivity in the face of increasing climate variability and depleted water resources and soil degradation.  At the same time, new approaches are needed to regenerate soil carbon (C), enabling greater moisture and nutrient retention, and reducing greenhouse gas (GHG; i.e., C02, CH4 and N20) emissions.  The key to meeting both of these challenges is to improve root structure and to enhance the ability of plants to access water and nutrients, and increase the efficiency with which plant-fixed C is stabilized as soil organic matter (SOM).

Controlling root structure and function in the context of crop productivity is the last frontier in our understanding of plant growth regulation.  While the power of genetics and molecular biology have revealed many important insights on root development in model plants under defined growth conditions, progress in applying these findings to crop plants in the field have been exceedingly limited.

Benefits
  • Performs collection of root-pulling force (RPF) phenotype more easily and efficiently
  • Streamlines data collection, increasing quality and quantity
Applications
  • Study of agricultural crop root structures and function

Last updated: July 2020

Add keywords or various names of inventors here (text is hidden)