Engineered Programmable Molecular Scaffolds from Porous Protein Crystals

Opportunity

Available for Licensing

IP Status

US Utility Patent: US 2017/0362282 (Recently Issued)

Inventors

Christopher Snow
Thaddaus R Huber

Figure 1 (Left): Example of Controlled Loading/Unloading of porous crystals (Acidic Elution of mNG)

At A Glance

Researchers at Colorado State University have developed a newly patented class of protein crystals that serve as scaffolds to precisely organize diverse guest domains (such as proteins, nucleic acids, nanoparticles, and small molecules) in three-dimensional space.  Unlike other materials, engineered protein crystals are sufficiently organized to allow high-resolution structure determination, yet enable site-specific changes via genetic or chemical modification.  This platform nanotechnology is a key advantage in advanced material engineering where precisely positioned active domains are required.

Licensing Director

Steve Foster
Steve.Foster@colostate.edu
970-491-7100

Reference No.:  16-002

Background

A key motivation for nano-biotechnology efforts is the creation of designer materials in which the assembly acts to organize functional domains in three dimensions. Crystalline materials are ideal from the validation perspective because X-ray diffraction can elucidate the atomic structure. Relatively little work has focused on engineering protein crystals as scaffolds for nanotechnology, due to the technical challenges of coaxing typical proteins into crystallizing, and the likelihood of disrupting the crystallization process if changes are made to the monomers.

Benefits
  • Highly stable
  • Controlled loading and unloading
  • Engineered for non-covalent and covalent capture of guest macromolecules
  • Allow for programmed placement within materials
  • Integrated crystals have spatially segregated loading patterns
Applications
  • Immobilized enzymes or enzyme pathways (protein zeolites)
  • Host-guest approach to structure determination via x-ray diffraction
  • Advanced delivery sensing or theragnostic materials
  • Transport of therapeutic macromolecules for advanced drug delivery applications
  • Confinement of fluorescent guests for biodegradable and adaptable biosensors
Publications

Huber, Thaddaus R2017, et al. “Installing Guest Molecules at Specific Sites within Scaffold Protein Crystals.” Bioconjugate Chemistry, Dec. 2017, pubs.acs.org/doi/abs/10.1021/acs.bioconjchem.7b00668.

Kowalski, Ann E., et al. “Porous Protein Crystals as Scaffolds for Enzyme Immobilization.” Biomaterials Science, The Royal Society of Chemistry, 28 Jan. 2019, pubs.rsc.org/en/content/articlelanding/2019/BM/C8BM01378K#!divAbstract.

Last updated: February 2020

Add keywords or various names of inventors here (text is hidden)